Atomistic Processes on Cu Nanowires

Berk Onat,¹ Mine Konuk,² Sondan Durukanoğlu,²* Gülay Dereli ³

¹ Informatics Institute, İstanbul Technical University, İstanbul 34469, Turkey
² Department of Physics, İstanbul Technical University, İstanbul 34469, Turkey
³ Department of Physics, Yıldız Technical University, İstanbul 34210, Turkey

We have calculated activation energies for several single atom and vacancy diffusion mechanisms on the <100> axially oriented, rectangular Cu nanowires with a particular interest in determining the effect of varying cross-sectional area on the activation barriers for the investigated processes. The calculations are performed using the nudged elastic band technique based on the interaction potential obtained from the embedded atom method. Our results on activation barriers for adatom diffusion mechanisms indicate a clear dependence on the cross-sectional area of the nanowires. We, furthermore, find that the energy barrier for single vacancy diffusion is decreasing drastically near the outer wall compared to barriers for single vacancy diffusion taking place in the interior region of the nanowire. We compare our results with others available and discuss their implications for growth or formation of nanowires.