The Effect of competition between the frequency of the field and the frequency of the spin flipping on the kinetics of Ising metamagnet

Gül GÜLPINAR,
Dokuz Eylül University, Department of Physics, 35160-Buca, İzmir, Turkey

We consider the effect of a variable representing the competition between the frequency of the field and the frequency of the spin flipping (Ω) on the dynamics of the metamagnetic Ising model in a cubic lattice, subject to the time varying external magnetic field. The system is modelled with a formalism of master equation at a meanfield level. The time averaged staggered magnetization (M_s) acts as the order parameter and divides temperature field plane into three regions: anti-ferromagnetic, paramagnetic and coexistence of anti-ferromagnetic and paramagnetic phases. It is observed that the topology of the dynamical phase diagram depends strongly on Ω as well as the ratio between interlayer and intralayer couplings.